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In this paper, we present a new numerical formulation of solving
the boundary integral equations reformufated from the Helmholtz
equation. The boundaries of the problems are assumed to be
smooth closed contours. The solution on the boundary is treated
as a periodic function, which is in turn approximated by a truncated
Fourier series. A Fourier collocation method is foliowed in which
the boundary integral equation is transformed into a system of
algebraic eqguations. It is shown that in order to achieve spectral
accuracy for the numerical formulation, the non-smoothness of the
integral kernels, associated with the Helmholtz equation, must be
carefully removed. The emphasis of the paper is oninvestigating the
essential elements of removing the non-smoothness of the integral
kernels in the spectral implementation. The present method is ro-
bust for a general smooth boundary contour. Aspects of efficient
implementation of the method using FFT are also discussed. Numer-
ical examples of wave scattering are given in which the exponential
accuracy of the present numerical method is demonstrated. @ t995
Academic Press, Inc.

1. INTRODUCTION

The boundary integred equation method is a powerTul tool
lor solving certain boudkiry value problems. It is particularly
attractive in developing numerical methods since, whenapplied,
it reduces the dimension of the problem and often transforms
a problem in an infinite domain to integrals on the finite bound-
ary in which the far field radiation condition is satisfied automat-
ically,

Numerical methods for the boundary integral equations
have been developed predominantly based on the boundary
element method (BEM) [1]. In this method the physical
boundary is divided into finite elements und integrations
over each element are approximated by numerical quadratures.
In this way. the integral equation is converted into a system
of algebraic equations. BEM has gone through a rapid
advancement in recent years. Its applications to the Helmholtz
equation are discussed in Ref. [2] and the references cited
therein. Other formulations of solving the boundary integral
equations in wave scattering and propagation have also been
proposed in the past, including, for example, the T-matrix
method [3-3].
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In this paper, we present a spectral method formulation for
solving the boundary integral equations reformulated from the
Helmholtz equation. For the Fourier approximations used in
this paper, we assume that the boundary of the problem is a
smooth closed contour, The functions appearing in the 2D
boundary integral equation will be treated as periodic functions,
which are in turn approximated with high accuracy using trun-
cated Fourier series. The boundary integral equation is then
transformed into a system of linear algebraic equations. The
spectral methods have been known to have extremely fast con-
vergence rates, faster than any finite power of 1/N when the
solution is infinitely smooth [6, 7] (where N is the number of
collocation points). The present numerical formulation will be
seen {0 have spectral accuracy.

It is known that, although any periodic function can be ap-
proximated by a truncated Fourier series, the rate of conver-
gence depends on its smoothness. Unfortunately, the integral
kernels for the Helmholtz equation are not smooth. [n particular,
we note that the 2D Green's function. appearing in the integral
cyuations, possesses i logarithmic singularity. Furthermore, the
normil derivative of the Green’s [unction also contains a term
involving the logarithmic fupction. It will be seen that it is
critical 4o remove the non-smoothness of the integral kernel in
order to achieve fast convergence in the spectral formuiation.
In this paper the non-smoothness of the integral kernels is
subtracted out by using a logarithmic periodic function whose
Fourier expansion is known,

Fourier approximation methods for the boundary integral
equations in wave scattering have been proposed in the past
for simple geometries. A “‘fast numerical method’” has been
formulated by Bojarski [8] for wave scattering by a circular
cylinder. It was pointed out that the boundary integral equation
for scattering by a hard circular cylinder can be solved easily
and efficiently in the Fourier spectrum domain of the solution.
Due to the special geometry considered, a simple relation for
the Fourier coefficients of the solution and those of the boundary
condition was derived. Recently a similar numerical approach
has been applied by Schuster [9] for a wave transmission prob-
lem of concentric cylinders, However, in these works the singu-
larities and non-smoeothness of the integral kerneis were not
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FIG.1, Schematic of discretization of the boundary. #is the parameterizing
variable for the boundary contour. m, and n; indicaie the direction of the nermal
vector for an exterior and interior problem respectively,

removed. Consequently the convergence rates of these methods
were not exponential.

In Section 2, a formulation of the boundary integral equatian
for the Heimholtz equation is given, followed by a discretization
using a Founer collocation method. Essential elements of
achieving spectral accuracy are investigated. In Section 3, a
numerical example is given in which the spectral rate of conver-
gence is demonstrated. Section 4 contains the conclusions.

2. FORMULATIONS

2.1. Boundary Integral Equations

Consider wave propagation in an interior or exterior domain
with a smooth closed boundary T' (Fig. 1). The wave equation
for a scalar function ¢ with assumed time dependency of
e~™' is reduced to the Helmholtz equation

Vi + k2 = 0, )]

where « is the wave number and V? is the 2D Laplace operator,
* = g¥ax* + 94ay:. The boundary condition considered in
this paper is one of the following types:
Dirichlet: ¢p(r) = a(ryon I
Neumann: (3¢p/an)r) = b(ryon I
Robin (impedance): caee(r) + B(ad/an}r) = c(r) on T

The Helmholtz equation (1) c¢an be reformulated into a
boundary integral equation in various ways [10, 11]. Our pur-
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pose in this paper is to demonstrate the spectral approximations
and the essential elements of achieving spectral accuracy. A
direct formulation of the boundary integral equation employing
the Green’s function will be used here which leads to an integral
equation involving ¢ and its normal derivative on the bound-
ary [2]:

—¢(])+f¢ dl = fGa¢dF 2)

where d/dn denotes the normal derivative, with the direction
of n being outward from the domain of wave propagation, and
rr denotes a point on the boundary. The Green’s function G(r,
r'), whose form will be given later, satisfies the equation

VG 4+ K2G = —-8(r — ). &)
Once the valugs of ¢ and d¢/dn on the boundary are found,

the solution at any point, r, inside the domain of wave propaga-
tion can be obtained as [2]

¢w(r)=L.( g-f—wif)w

Without loss of generality, let us now assume that the bound-
ary curve I is parameterized as

rr=r(d), 0=6=72n 4
where 8 is a non-dimensional parameter for the boundary con-
tour, not necessarily the arclength or some angle. In addition,
the curve is supposed to be simple, that is,

dr
PT:

=\ (dx/dy + (dy/d6y # 0.

For simplicity, we further assume that r(#) is infinitely differ-
entiable. Then the boundary integral equation (2) can be writ-
ten as

dr

T dé

o)+ [T 3@ 6.

(5)

—f“”}d’(e)c(a 9)

in which the line element dI" = |dr/dé| d0. For clarity, the
dependencies on § and 6" have been expressed explicitly in (3).

For the 2D Helmholtz equation, the outgoing Green’s func-
tion and its normal derivative are [12)

G(8, 6 = (i/4) HP(kR) (6)
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G ; ] R-
SL(6.6) = — THP(kR) 0

in which we have used the notations that R = r(6) — r(8")
and R = |R|. Here H{" and H{" are respectively the first kind
Hankel functions of order zero and one,

2.2, Spectral Approximations

For a closed boundary I', ¢(@) and (3¢/dr} (6) are periodic
functions of 6, for 0 =< 6 = 27, Let ¢ and d¢/9n be approxi-
mated by truncated Fourier series as

Ni2-1

PO = > he (8)
n==N72
N NiZ—1
ﬂ@ > e (9)

n=—Ni2

The particular form of the truncated Fourier series has been
taken in (8) and (9) for the convenience of using discrete fast
fourier transform (FFT) programs {7]. Substituting (8} and (9)
into (5), the boundary integral equation becomes

N2-1 N2 —

2D e+ S b [ et 6.0

"4,N n=—N{2
N2 -

2 dfnf e G(6, §') % do

n==~Ni2

dr

40 do

(10

We note that the two integrals in (10} are actually the Fourier
coefficients of G(8, &) |dr/dé| and dG/an (8, 0"} |dr/d6), respec-
tively. Our aim is to evaluate the integrals by the fast Fourier
transforms with spectral accuracy.

It is clear that both G(8, #') |dr/d6| and (3G/an) (B, &) |dv/
d@| are periodic functions of & and &'. They are also infinitely
differentiable except at 8 = €', where R = ( in (6) and (7).
Although any periodic function can be approximated in a trun-
cated Fourier series, the rate of convergence depends on the
smoothness of the function. From this consideration, we note
that, first, G(#, ") has a logarithmic singularity at R = 0, due
to the Hankel function of order zero in (6). Second, although
(0G/an) (6, &) can be shown to be a finite function, it is not
infinitely smooth. It is easy o show that the function R has a
discontinnous derivative at # = #'. In particular, for |8 — ¢
small, we have

= |r(8) — r(8)| = )+1d l’-(e gy + ‘
1 d°r , 3
dB sagt? O }‘(11)

Consequently any term with an odd power or logarithmic func-
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tion of R will not be infinitely smooth and has to be treated in
order to achieve spectral accuracy in the Fourier approximation.
To study the singularity in G(8, 6'), we note that

G(6, 0 = iHBl)(KR) = 2’;— (J(kR) + i¥(kR))

in which J; and ¥, are zeroth order Bessel functions of the first
and second kind, respectively. Using the asymptotic series for
a small argument [13],

(KRY | (RY
HlR) =1 =77 64
R
Yo(KR) ——ln ( : )JO(KR) + YJO( R) + (‘;T)
we have, for |8 — &'| small,
Gi6, 0)= i (Jo(kR) + iYo(kR))
1 KR
= -—- —— —— + g
- In ( 5 ) Jo{kR) + (smocth terms)

in which ‘‘smooth terms’’ represents a convergent power series
containing only the even powers of R, and Jf; is the regular
Bessel function of zeroth order which is also a power series of
R?[13]. To remove the logarithmic singularity but preserve the
periodicity, consider the periodic function In |2 sin (8 — 8"}/
2)|, which has a logarithmic singularity at # = @', Its Fourier
series can be found exactly [12]:

In zsin(ﬂ—ﬁ)r=_2_—_cosn(9—9)' (12)
2 =1 n
To subtract out the singularity in G(8, '), let
_ M 1 -8
G(6, ) = Ho (xR) + —ln 2 sin 3 Jo(xR).
Then the Green’s function is found as
.= . { . (e-6
G(6,8)=0G(8,6) — %ln 2 sin 2 JolR). (13)

Using (11), it is easy to show that G(8, #') is periodic but
finite for all values of the arguments. Furthermore, both G4,
8') and Jy(kR) are now infinitely differentiable functions. Thus
the Fourier coefficients of G(6, @) |dr/d#| can be computed
according to (13) with spectral accuracy. For the term involving
the logarithmic function in (13}, convolution sums will be used.
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We now study the singularities in the normal derivative of
the Green's function dG/dn. The asympiotic expression of
H"(xR) for kR small has the following form [13]

H(KRY = J/(kR) + iY,(kR)

= J\(KR) + i (— Lmz—(R + *“ln (Kf) 1(KR)

+ odd powers of KR)

2i 2: kR
- +
mcR ln ( > ) Ji(kR) odd powers of kR
in which we have used the fact that the Bessel function of order
unity, Jy, is a power series of odd power of kR,
3
J{KR) = "R (';‘2’ +

In addition, it can be shown that R - n = O{(8 — ). Thus

it follows that
(20 2 (R
4 kR 2

+ odd powers of KR) EI}_

—(3 &) = Ji(kR)

= % ln (K?R) Ji(kR) B_R_" + (smooth terms).
It is seen that, although 8G/4n is a finite function, it does not
have smooth derivatives due 1o the logarithmic function that
appeared in the first term shown above. For this reason, its
Fourier approximation will converge only at a finite rate of
1/N*. To smooth out the function for computations by FFT, let

A, 0)=— %‘Hﬁ"(m) —ﬁRR“
K . {e— R-n
—1In |2 sin ( 2 )y Ji(kR) 7

Then

ig(e, #)=H(6, )
on (14)

K
+ —In
2

25in(9F

The functions H(0, 8) and J,(«kR) (R - n/R) in (14) are now

P R-
) ‘ Ji(kR) —R—“.
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periodic and infinitely differentiable. The Fourier coefficients
of (dG/dnr) (8, 0') |dr/dé| will be computed accordng to (14).

Following the above analysis, we then express the boundary
integral equation (10) as

N2— NZ=1

5 E e+ Y ¢,,(j e (e, o) |9

—Ni2 a=—N{Z
i 2 ing : G_ 9’ R‘
+217J0 e 1n 2Sll’l( 3 )lJI(KR) R
a‘r

N1
a6

= > % U T, 8 |2F
2 sin (9 _2 3r> da).

n==N72
LI ™
. jo " 1n
Now all the integrals in (15) are in a form which can be
evaluated numerically with spectral accuracy.

de

21

(15)
df

d
J(kR) d—g

2.3. Discretization

In what follows, a spectral collocation approach will be taken
in deriving the algebraic system for the boundary integral equa-
tion (15). Let us introduce two sets of discretization points
(Fig. 1)

8, = 2ajlIN, J=01,  N—1,

& =2m(j +DIN, j=0,1,..N— 1

The reason for using two sets of discretization points, as will
be clear later, is that it avoids the direct evaluations of G(#8,
¢’y and H(#, §') at points where # = ¢ Although both functions
are finite there, their limits are geometry dependent. The current
discretization is robust. We then require that the boundary

integral equation (15) be satisfied at collocation points ¢ =

6;',]', = 0, 1, J N — 1.
For convenience of discussion, we denote the following Fou-
rier series approximations at @ for ;' = 0, 1, .., N — 1,
_ | dr N2-1 y
GO, 6 | 2o = 2 gne™ (16a)
n=—NI1
N2-1
H(, 6/ del_ > Ryt (16b)
d& n=-Nf2
. dl‘ Ni2—1| _
ValsR)ly; 100 = 2 prae™ (16c)
n=—N{2
R ‘n dt‘ N2-1 )
SRRy —— | =] = e 16d
[ 1(KR) R L pT ":Zm Gint (l6d)

The coefficients of the expansions are calculated by FFT
{backward in the usual sense) as
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N—1 _

= inf, (163')
r !
E e H@G, 6) |5 () (16b")

N da
R dr '
= E;Zo "% [Jo( kR, 56(9,-)‘ (16c"
] i inf. R ‘T dr '
4= 2 " [JI(KR) - ] o (16d)

In addition, we denote (12) as

In |2 sin ( )‘ 2 a, pinte- ﬂ’) (16e)

where @y = 0 and a, = — 1/2|n| for n # 0.

It is immediately seen that the two integrals involving G
and H in (15) equal 2mg;, and 2wh;,, respectively. The other
two integrals are obtainable by convolution sums. Specifically,
using the definitions given in (16), we have

2si 9@"')
sin 2

_ I for ind dr
uj'":EJ'O " In JolkR) 78 de

N1

= 2 Prula-ne ™ (172)
m=—N{2
1w . (86— 4 dr
v =5 [ en 25111( - oy Bn == | 5| 40
N2—1 .
= 2 Gruttaene (17b)

m=—N{Z

By substituting (16) and (17) into (13), the resulting algebraic
system is

1 NiZ—1 Ni2—1
A E ¢’ emb‘ + 2 ¢R(2Whjﬂ' + Kty I'I)
n=-Ni2 ([8)
Ni2=1
= 2 hQagm — v
n=—NI2
forj=0,1,2, .. N— 1
Equation (18} is easily cast into a matrix form
Ad = B, 19)

where & and ¥ are the vectors containing qﬁb,, and l:f;,,, respec-
tively. For Dirichler boundary condition, ¥ is solved from (19)
with @ obtained from the boundary condition and vice versa for
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the Neumann boundary conditions. The Robin type impedance
boundary condition can be treated similarly.

2.4. Evaluation of Convolution Sums

The convolution sums in (17) require O(N) multiplications
for each u;, and v;,,. Thus the total operations of obtaining the
convolution sums are of order O(N*}. This cost can be reduced
considerably to O(N* log, N) by the use of a pseudospectral
transformation method with de-aliasing techniques [6, 7). For

completeness, the evaluation of (17) with a “‘padding’’ de-
aliasing technique is given below.
Let M = 3N and
&=2miM, j=01,2 .. M-1

Compute the following using FFT forj = 0, 1,2, ... M — 1,
Mi2—] ,
Ay = 2 G,e™% ™™
m==Mi2
M-l )
P = 2 Prme™ e,

i
=—Mi2

where

a,, —-N=m=N-1,
d, =
a, other,
Pim. —NI2=m=N/2-1,
ﬁj’m =
0, other,

and form the product
Uyj = Ay
Then the convolution sum u,, is the (backward} FFT of U};:

M=

1
Uy, M j=0
for —N/2 = n < N/2 — 1. The convolution sum v, can be
obtained identically.

3. NUMERICAL EXAMPLE: SCATTERING OF A PLANE
WAVE BY AN ELLIPTIC CYLINDER

The numerical method described in the previous section will
now be applied to the problem of a plane wave scattering by
an elliptic cylinder. Exact solutions of wave scattering by an
elliptic cylinder can be easily obtained in infinite series [12].
However, numerical evaluation of the exact infinite series is
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TABLE I

Values of d¢/an for the Dirichlet Boundary Condition at Selected
Points on the Boundary
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TABLE II

Values of dd/an for the Dirichlet Boundary Condition at Selected
Points on the Boundary

N =0 = g¢° = {&0° Relative error N 4= = 9¢° 9 =180 Relative ervor
. k=27 k=27
32 6178009567 2376671291 7.134225119 0.04 32 6.402635098 2.165098187 6.800520027 4.003
48 6.379285016 2.175324633 6.914464114 02 x J07* 48 6.379355527 2.175263759 6.914393819 0.3 X 107F
64 6.379334010 2.175259123 6.914387795 0.1 x 107 64 6.379334276 2.175259159 6.914387893 0.5 x 107
80 6370333062 2.175259114 6.014287773 i0~? 80 6.379333966 217525914 6014387774 0.5 % 107°
96 6.379333961 2175259114 6.914387772 o 96 6.379333961 2.175259114 6.914387772 1g=n
256 6.379333961 2175259114 6.914387772 - 256 6.379333961 2.175259114 6914387772 —
K= 207 k = 20w
206 62.830835900  9.8054016493  62.926987291 0.2 x 107# 236 64.329776062 10626283399  61.739047992 0.1
316 62.831401083  9.8048411925  62.92643508% 0.1 > 107% 256 62.832024705 0.804276790  62.925828886 0.1 > 1072
336 62.831400190  9.8048403329  62.92643595% 10°° 276 62.831400247 9804840394 62.926435874 03 K 107°
356 62.831400191 98048403325 62.926435957 1071 296 62.831400191 9.804840332 62.926435957 10"
512 62.831400191 0.8048403325  62.926435957 — 512 62.831400191 9.804840332  62.926435957 —
Note. The boundary is given by (20). a = 2, b = 1, incident angle o = (°. Note. The boundary is given by (21). a = 2, b = 1, incident angle a = 0°.
not easily obtainable due to the complexity of the Mathieu for N = 256 and N = 512 for the two cases, respectively.

functions invelved. Our purpose here is to demonstrate the
exponential rate of convergence of the spectral method formu-
lated in the previous section. The numerical results will also
be compared with some asymptotic values available in the
titerature [14].

3.1. Spectral Rate of Convergence

Let the plane incident wave having an incident angie « about
the x axis be

¢, = eix(.t cos ety 5in a)
i .

The scattered wave, ¢, satisfies the Helmholtz equation (1).
The boundary conditions considered here are the Dirichlet (soft)
type ¢p = —d; or the Neumann (hard) type, dd/on = —ad,/an.

A simple parameterization of the elliptic cylinder is given by

I:(x.y}y=(acos 8 bsind), 0=0=2m, (20}
where a and b are the major and minor axis of the ellipse.
The normal vector on I' is m = —(b cos 8, a sin &)/
Vb cost @ + a* sint 8,

Numerical results for the Dirichlet boundary condition will
be presented first. For this calculation the parameters have been
taken to be @ = 2 and b = 1. Two cases are presented with
wave numbers ¥ = 27 and k¥ = 207, In Table I, the values of
the solution at three selected points on the boundary are given
as the number of collocation points increases. Listed are the
values of |d¢/dn| at § = 0°, 90°, and 180° on the boundary for
the incident angle o = 0. Since no exact value is available,
the numerical solutions are compared with the results obtained

Clearly exponential rate of convergence is observed.
We point out that, although the parameterization of the ellipse
given in (20} is a convenient one, it may not be the best. For
example, the following form of parameterization, which has

more uniformly distributed collocation points than (20),
I': (x, ¥} = (acos (& + 0.05 sin(28)),

bsin (0 + 0.053 sin (20, @b

Q0= 8=72q,

yields the values shown in Table II. A somewhat better accuracy
is observed.

In Fig. 2 the solution, d¢/ax, as a function of & on the surface
of the elliptic cylinder has been plotted. Shown are the results
for the number of collocation points being 32 and 256, x = 2.

3.2. Far Field Directivity

Far field scattered intensities, computed as rd?, have also
been calculated. The values on an exterior point are obtained
through the boundary integral as

¢(r>=fr( 80 p20 )

Ni2—-1
dr (22)
emﬂ
n—zm %J d6 48
e BG dl‘
—_ g = d’ X
n=ZNn’2 é J 0 € d b

The Green’s function for points lying outside of the boundary
does not have any singularity. Thus (22) is evaluated using
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FIG. 2. Solution d¢/dn on the surface of the ellipse for the Dirichlet
boundary condition. ¢ = 2, & = I, and k = 2w, Plane wave incident angle
a = (°. The parameterization of the ellipse is that of (21).

FFT directly. The directivities of the scattered intensity for
wave incident angle o« = 0°, 30°, 60°, and 90° are shown in
Fig. 3. For this calculation, a = 2, 5 = 1, and ¥ = 27

o=90°

i

o=30° a=60°

FIG. 3. Far field directives of the scattered wave for indicated incident
angles. @ = 2, b = |, and « = 27, with Dirichlet boundary condition.
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TABLE 111
Values of r¢? at Far Field for the Selected Angles

Far field angle Numerical Asymptotic [14]
uwy = 1.0, 6 = (0°, 180° 1.769057417 1.774
w = 1.0, 8 =90° 2137413140 2113
e = 1.0, 9= 270° 1.538098511 1.49}%
uy = 0.6, 6 = 0°, 180° 1.364415300 1.367
e = 0.6, 8 = 90° 1.506576730 1.4384
oy = 0.6, 6 =270 1.287260683 1.258
e = 0.2, 0 = 0° 180° 10627756012 1.064
w =02, 6= 90° 1.107062467 1.087
we = 02, 8= 270° 1.062022484 1.041

Note. Dirichlet type soft wall boundary conditions are applied. a = cosh
g, b = sinh g, x = 0.2, and incident angle o = 90°.

Barakat [14] gives some asymptotic values of long wave
scattering of an elliptic cylinder at far field for normal incidence.
A comparison of the current numerical results with the asymp-
totic values is presented in Tables IIT and IV. For these cases,
a = cosh g, b = sinh g, and k = 0.2. Here p, corresponds
to a value in the elliptic coordinates, The results of the far field
scattered intensity for gy, = 1.0, 0.6, and 0.2 are presented in
Tables TII and IV for the Dirichlet and Neumann boundary
conditions, respectively. For the present long wave scattering,
N = 64 has been used for all the calculations, The numerical
computation agrees with the asymptotic estimation.

Finally, we note that although the exterior scattering problem
is uniquely determined, the direct formulation of the boundary
integral equation used here would not yield a unique solution
when the wave number « coincides with the eigenvalues of a
correspondent interior homogeneous problem. On the other
hand, this numerical difficulty is well understood and remedies
are readily available (10, 11]. For example, unique solution

TABLE IV
Values of r¢* at Far Field for the Selected Angles

Far field angle Numerical Asymptotic [14]
ug = 1.0, ¢ = 0°, 180° 0.00917501 1010 0.00884
wp = 1.0, & = 9G° 0.02258893859 a0216
o = 10, 9 =270° 0.1110188572 0.1113
e = 06, ¢ = 0°, 180° 0.001676516587 0.00165
e = 0.6, 8 = 90° 0.007209616977 0.0071
o = 0.6, 8 = 270° 0.02745548914 0.0273
o =02, 6 =0° 180° 0.0001288604229 0.00013
o = 0.2, 8 =90° 0.003710427872 .0037
iy = 02, 8= 270 0.006989684179 0.0069

Note. Neumann type hard wall boundary coaditions are applied. ¢ = cosh
g, & = sinh gy, ¥ = 0.2, and incident angle @ = 90°.
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can be obtained in a combination of single- and double-layer
formulation of the boundary integral equation [15]. The modi-
fications of the present spectral implementation to other formu-
lations of the boundary integral equation are straightforward.

We also note that the present formulation improves the com-
putational efficiency for both the low and high wave number
probilems through the reduced size of the resulting algebraic
systermn (19), due to the exponential accuracy achieved in the
approximation. Since the cost of direct methods of solving
linear system, such as Gauss elimination, increases as O(N?),
some iterative metheds may be preferred for the high wave
number problems. This, however, is beyond the scope of this
paper.

4. CONCLUSIONS

In this paper, a spectral method of solving the boundary
integral equation is presented. It is shown that the integral
kernels for the Helmholtz equation contain singular terms that
have to be removed 1o achieve the spectral accuracy. Detailed
numerical implementation of a Fourier collocation formulation
has been given. The non-smoothness of the integration kernels
is subtracted out by using a logarithmic function whose Fourier
expansion is known. The numerical formulation presented here
preserves the spectral accuracy and yields an exponential rate
of convergence.

Compared to the boundary element approaches, the spectral
boundary integral equation method presented in this paper
would yield matrices of much smaller size since the latter
requires far fewer points to achieve the same accuracy. This,
of course, reduces the complexity and the cost of solving the
resultant algebraic system. Since both methods will result in
dense matrices, it appears that the spectral formulation is more
advantageous for problems with smooth geometries.
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